Pre-class Warm-up!!!
Which of the following statements is logically equivalent to the statement that the square matrix A is invertible?
a. The equation $A x=0$ is consistent
$A x=0$ is always consistent
b. The reduced echelon form of A is the identity介
c. The echelon form of A has a leading entry in every column
d. None of the above
e. More than one of the above.
\Rightarrow We can compute A^{-1} by Gauss-Jordan elimination, so A is invertible.

If A is invertible then every equation $A x=b$ has a solution: $x=A^{-1} b$
8 the echelon form has a leading entry in every row. hence a leading entry in every column: C.

We learn:

- the definition in terms of cofactor expansions
- row and column properties, the effect under elementary operations
- computation using Gaussian elimination

New vocabulary:

- minors, cofactors, adjoint matrix, transpose matrix, upper triangular matrix

Some theorems:

- the formula for the inverse matrix using the adjoint matrix
- the determinant of the product is the product of the determinants
- Cramer's rule

Cofactors expansions of the determinant
Let $A=\left(a_{-}\{i j\}\right)=\left[\begin{array}{llll}a_{-} 11 & a_{-} 12 & \cdots \\ a_{-} 21 & a_{-} 22 & \vdots \\ a_{-} 31 & & \vdots \\ \cdots & \cdots & a_{n 1}\end{array}\right]=\left[\begin{array}{ccc}2 & 5 & 7 \\ 2 & 0 & 2 \\ 0 & 1 & 0\end{array}\right]$
The i, j minor of A is $M_{-} i j=$ where row c and jet column J are deleted.
We use $\operatorname{det}[a]=a \quad \operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$ The i, j cofactor of A is $A_{-} i j=(-1)^{\iota+j} M_{i j}$

$$
\left.\begin{array}{l}
\text { egg. } \quad A_{11}=(-1)^{1+1} M_{11}=M_{11} \\
\quad A_{32}=(-1)^{3+2} M_{32}=-M_{32}=10 \\
{[+-+-+-} \\
-+-+++ \\
+-++-+
\end{array}\right]
$$

Cofactor (or Laplace) expansion along row i:

$$
\operatorname{det} A=|A|=a_{L 1} A_{L 1}+a_{L 2} A_{L 2}+\cdots+a_{L n} A_{L 1}
$$

Along column j: $a_{\imath \jmath} A_{\searrow \jmath}+\ldots .+a_{n \jmath} A_{n \jmath}$

Example: along row 3 The $(3,2)$ minor is $\operatorname{det}\left[\begin{array}{ll}2 & 7 \\ 2 & 2\end{array}\right]=4-14=-10$

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{lll}
2 & 57 \\
2 & 0 & 2 \\
0 & 1 & 0
\end{array}\right] & =0 \cdot 10-1(-10)+0(-10) \\
& =10
\end{aligned}
$$

Row and column properties of the determinant

- cofactor expansions along any row or along any column are equal

The effect of elementary row operations on dit:

- adding a multiple of a row to another row leaves the determinant unchanged
- switching two rows multiplies the determinant by -1
- multiplying a row by a number t multiplies the determinant by t.

Page 201 question 10:
Evaluate the determinant after simplifying by adding a multiple of some row or column to another.

$$
\operatorname{det}\left[\begin{array}{cccc}
-3 & 6 & 5 \\
2 & -4 & 6 \\
1 & -1 & 7
\end{array}\right]
$$

Solution. The def is unchanged by adding $2 \cdot$ column 1 to column 2 We get $\left[\begin{array}{ccc}-3 & 0 & 5 \\ 2 & 0 & 6 \\ 1 & 1 & 7\end{array}\right]$
Calculate det using the col 2

$$
\begin{aligned}
& \text { expansion. } \\
& -0\left|\begin{array}{ll}
2 & 6 \\
1 & 7
\end{array}\right|+0\left|\begin{array}{rr}
-3 & 5 \\
1 & 7
\end{array}\right|-1\left|\begin{array}{rr}
-3 & 5 \\
2 & 6
\end{array}\right| \\
& =28
\end{aligned}
$$

- cofactor expansions along any row or along any column are equal
The effect of row operations:
- adding a multiple of a row to another row leaves the determinant unchanged
- switching two rows multiplies the determinant by -1
- multiplying a row by a number t multiplies the determinant by t.

$$
\operatorname{det}\left[\begin{array}{lll}
a & ? & ? \\
& b & \\
0 & ? \\
& \ddots & \ddots
\end{array}\right]=a \cdot b \cdot c \cdot h
$$

Using $1^{\text {st }}$ column expansion

$$
\operatorname{det}[]=a\left|\begin{array}{cc}
b & \cdots \\
0 & h
\end{array}\right|=a \cdot b\left|\begin{array}{cc}
c & ? \\
0 & n
\end{array}\right|
$$

Consequences

- If a matrix has a zero row or column then let $=0$ from the Laplace expansion.
- If a matrix has two rows the same or two columns the same then let $=0$
- The set of a triangular matrix is the product of the diagonal elements.
$\frac{\operatorname{det}\left[\frac{v}{\frac{v}{3}}\right]}{}=-\operatorname{det}\left[\frac{1}{\square}\right]$

Like questions 13-16:
Use the method of elimination to evaluate the determinant.
$\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 4 \\ 5 & 9 & 0 \\ 2 & 3 & 1\end{array}\right]$
Solution: (2) $\rightarrow(2)-5(1)\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & -1 & -20 \\ 0 & -1 & -7\end{array}\right]$
(3) \rightarrow (3)-(2) $\left[\begin{array}{ccc}1 & 2 & 4 \\ 0 & -1 & -20 \\ 0 & 0 & 13\end{array}\right]$

The determinant is unchanged and equals $1 \cdot(-1)-13=-13$
$\mathrm{B}=\left[\begin{array}{lll}2 & 3 & 1 \\ 5 & 9 & 0 \\ 1 & 2 & 4\end{array}\right]$
Solution start Worth (1) $\leftrightarrow 3$, multiplies the det by -1 , so the axsweris $1+13$

Check $1 \cdot 9.1+2 \cdot 0 \cdot 2+4 \cdot 5.3$
$-2.9 .4-3.0 .1-1.5 .2$
$=-13$

Practical way to compute the determinant of a 3×3 matrix.

$$
\begin{aligned}
& =a e i+b f g+c d h \\
& -g e c-h f a-l d b
\end{aligned}
$$

Pre-class Warm-up!!!

a. -1
b. 0

Question.
What are the determinants of the three elementary matrices

1. $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ det $=1$
2. $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right] \quad$ det $=-1$
3. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1\end{array}\right] \quad$ det $=3$

More properties of the determinant

Defining properties: $\operatorname{det} \mathrm{A}$ is the unique function on square matrices for which

- it is linear on each row
- If we switch two rows, $\operatorname{det} \mathrm{A}$ is multiplied by -1
- $\operatorname{det}($ identity matrix $)=1$

It has the same defining properties on columns

- If A, B are $n \times n$ matrices then $\operatorname{det} A B=\operatorname{det} A \operatorname{det} B$
- The transpose matrix: $\operatorname{det} \mathrm{A} \wedge \mathrm{T}=\operatorname{det} \mathrm{A}$

Example $\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right]^{\top}=\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$

If we multiply a row by r, the aet is multiphed by r.

$$
\text { then } \operatorname{det}\left[\frac{a_{L}+b_{u}}{}\right]=\operatorname{det} A+\operatorname{det} B \text {. }
$$

This relates to writing invertible matrices as products of elementary matrices.

More properties of the determinant

Theorem 5
If $\operatorname{det} A \neq 0$ then A is invertible and it's inverse is

$$
A^{-1}=\frac{\left[A_{i j}\right]^{\top}}{\operatorname{det} A}
$$

where $A_{i j}=(-1)^{L+1} M_{i j}$ is the l, y cofactor $\left[A_{i j}\right]^{T}$ is called the adjoint matrix.

Consequences: A square matrix A is invertible $<=>\operatorname{det} A \neq 0$
" ${ }^{\prime}$
If $A B=B A=I$ then $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B=\operatorname{det} I$

$$
=1
$$

so $\operatorname{det} A$ is invertible. "E" from The oscm 5.

Question 34
Find $A \wedge\{-1\}$ when $A=\left[\begin{array}{rrr}2 & 0 & 3 \\ -5 & -4 & 2 \\ 2 & -1 & 1\end{array}\right]$
Solution: $\operatorname{det} A=35$

$$
\left.\left.\begin{array}{l}
\text { sOlution: } \operatorname{det} A=3 D \\
{\left[M_{i j}\right]=\left[\begin{array}{ccc}
-2 & -9 & 13 \\
3 & -4 & -2 \\
12 & 19 & -8
\end{array}\right]} \\
{\left[A_{i j}\right]=\left[\begin{array}{ccc}
-2 & 9 & 13 \\
-3 & -4 & 2 \\
12 & -19 & -8
\end{array}\right]} \\
A=4
\end{array}\right] \begin{array}{cc}
0 & 3 \\
-4 & 2
\end{array}\right]\left[\begin{array}{ccc}
-2 & -3 & 12 \\
9 & -4 & -19 \\
13 & 2 & -8
\end{array}\right] .
$$

Cranmer's rule
To solve $A x=b$ where \quad egg $c_{3}=\left[\begin{array}{l}1 \\ 4\end{array}\right] \quad c_{2}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$

$$
A=\left[c_{-} 1\left|c_{-} 2\right| \ldots \mid c_{-} n\right] \quad A=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right]
$$

$$
x_{-} i=\frac{\operatorname{det}\left[c_{-} 1|\ldots| b|\ldots| c_{-} n\right]}{\operatorname{det} A}
$$

Question: Solve

$$
\begin{aligned}
& \begin{array}{l}
x+2 y=1 \\
4 x+3 y=2
\end{array} \\
& x=\frac{\left.\left\lvert\, \begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right.\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
1 \\
2
\end{array}\right]}{\left|\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right|}=\frac{-1}{-5}=\frac{1}{5} \\
& y=\frac{\left|\begin{array}{ll}
1 & 1 \\
4 & 2
\end{array}\right|}{\left|\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right|}=\frac{-2}{-5}=\frac{2}{5}
\end{aligned}
$$

